An overview of different homogenizers, their working mechanisms and impact on processing of fruits and vegetables

Fruits and vegetables (F&V) are the second highest recommended foods, rich in antioxidants, vitamins and minerals, vital for building immunity against chronic diseases. F&V processing involves particle size reduction, for which different types of homogenizers, categorized as mechanical homogenizers, pressure homogenizers and ultrasonic homogenizers are used. The review discusses different types of homogenizers, their working mechanism, and application in F&V processing. Among mechanical homogenizers, knife mills are used for primary size reduction, ball mills for the micronization of dried F&V and rotor-stator homogenizers for emulsification.
Use of the ultrasonic homogenizer is limited to extraction of bioactive compounds or as a pre-treatment for dehydration of F&V. High-pressure homogenizers are most widely used and reported due to the synergistic effect of homogenization and temperature increase, resulting in longer shelf-life and better physicochemical properties of the product. Additionally, the review also explains the effect of homogenization on the physicochemical, sensory and https://biodas.org/ nutraceutical properties of the product.

Pre-processing tissue specimens with a tissue homogenizer: clinical and microbiological evaluation

Background: Tissues are valuable specimens in diagnostic microbiology because they are often obtained by invasive methods, and effort should thus be taken to maximize microbiological yield. The objective of this study was to evaluate the added value of using tissue pre-processing (tissue homogenizer instrument gentleMACS Dissociator) in detecting microorganisms responsible for infections.
Methods: We included 104 randomly collected tissue samples, 41 (39.4 %) bones and 63 (60.6 %) soft tissues, many of those (42/104 (40.4 %)) were of periprosthetic origins. We compared the agreement between pre-processing tissues using tissue homogenizer with routine microbiology diagnostic procedure, and we calculated the performance of these methods when clinical infections were used as reference standard.
Results: There was no significant difference between the two methods (McNemar test, p = 0.3). Among the positive culture using both methods (n = 62), 61 (98.4 %) showed at least one similar microorganism. Exactly similar microorganisms were found in 42/62 (67.7 %) of the samples. From the included tissues, 55/ 104 (52.9 %) were deemed as infected. We found that the sensitivity of homogenized tissue procedure was lower (83.6 %) than when tissue was processed using tissue homogenizer (89.1 %). Sub-analysis on periprosthetic tissues and soft or bone tissues showed comparable results.
Conclusions: The added value of GentleMACS Dissociator tissue homogenizer is limited in comparison to routine tissue processing.

Functionality of MC88- and MPC85-Enriched Skim Milk: Impact of Shear Conditions in Rotor/Stator Systems and High-Pressure Homogenizers on Powder Solubility and Rennet Gelation Behavior

  • Milk protein concentrate (MPC) and micellar casein (MC) powders are commonly used to increase the protein concentration of cheese milk. However, highly-concentrated milk protein powders are challenging in terms of solubility. The research question was whether and how incompletely dissolved agglomerates affect the protein functionality in terms of rennet gelation behavior. For the experiments, skim milk was enriched with either MC88 or MPC85 to a casein concentration of 4.5% (w/w) and sheared on a laboratory and pilot scale in rotor/stator systems (colloid mill and shear pump, respectively) and high-pressure homogenizers.
  • The assessment criteria were on the one hand particle sizes as a function of shear rate, and on the other hand, the rennet gelation properties meaning gelling time, gel strength, structure loss upon deformation, and serum loss. Furthermore, the casein, whey protein, and casein macropeptide (CMP) recovery in the sweet whey was determined to evaluate the shear-, and hence, the particle size-dependent protein accessibility. We showed that insufficient powder rehydration prolongs the rennet gelation time, leading to softer, weaker gels, and to lower amounts of CMP and whey protein in the sweet whey.

Characterization of Astaxanthin Nanoemulsions Produced by Intense Fluid Shear through a Self-Throttling Nanometer Range Annular Orifice Valve-Based High-Pressure Homogenizer

Stable, oil-in-water nanoemulsions containing astaxanthin (AsX) were produced by intense fluid shear forces resulting from pumping a coarse reagent emulsion through a self-throttling annular gap valve at 300 MPa. Compared to crude emulsions prepared by conventional homogenization, a size reduction of over two orders of magnitude was observed for AsX-encapsulated oil droplets following just one pass through the annular valve. In krill oil formulations, the mean hydrodynamic diameter of lipid particles was reduced to 60 nm after only two passes through the valve and reached a minimal size of 24 nm after eight passes.
Repeated processing of samples through the valve progressively decreased lipid particle size, with an inflection in the rate of particle size reduction generally observed after 2-4 passes. Krill- and argan oil-based nanoemulsions were produced using an Ultra Shear Technology™ (UST™) approach and characterized in terms of their small particle size, low polydispersity, and stability.

Characteristics of an Emulsion Obtained Using Hydrophobic Hydroxypropyl Methylcellulose as an Emulsifier and a High-Pressure Homogenizer

Hydrophobically modified hydroxypropyl methylcellulose (HM-HPMC), a polymer in which a small amount of HPMC is stearoxyl substituted, was used as an emulsifier of emulsion-type lotion. A high-pressure homogenizer (microfluidizer) was used. The viscosity of the 1% HM-HPMC aqueous gel decreased after passing through the microfluidizer from 5.5 to 2.7 Pa·s. When liquid paraffin (LP) was used as the oil phase, a stable emulsion was obtained with an LP ratio of 1-40%. The apparent viscosity decreased with LP ratios up to 20%, and then increased with increasing LP concentration.
The emulsions with an LP ratio <20% presented a pseudo-viscous flow, similar to that of the diluted polymer solution. HM-HPMC likely adsorbed onto the oil with a stearoxyl group; thus, the interaction between the stearoxyl group, which explained the high viscosity of HM-HPMC, decreased, reducing the viscosity of the emulsion. The LP ratio was 40%, and the emulsion presented a plastic flow, which is typical of concentrated emulsions. The size of the droplet in the emulsion was approximately 1 µm regardless of the LP ratio. When low-viscosity LPs or monoester-type oils such as isopropyl myristate were used, some of the emulsions presented creaming. An emulsion using HM-HPMC as an emulsifier and an appropriate oil homogenized with a microfluidizer is stable, has low viscosity, and can be easily spread on skin.

Proteomic evaluation of plasma membrane fraction prepared from mouse liver and kidney using a bead homogenizer: Enrichment of drug-related transporter proteins

Quantifying the protein levels of drug transporters in plasma membrane fraction helps elucidate the function of these transporters. In this study, we conducted a proteomic evaluation of enriched drug-related transporter proteins in plasma membrane fraction prepared from mouse liver and kidney tissues using the Membrane Protein Extraction Kit and a bead homogenizer. Crude and plasma membrane fractions were prepared using either the Dounce or bead homogenizer, and protein levels were determined using quantitative proteomics.
In liver tissues, the plasma membrane fractions were more enriched in transporter proteins than the crude membrane fractions; the average enrichment ratios of plasma-to-crude membrane fractions were 3.31 and 6.93 using the Dounce and bead homogenizers, respectively. The concentrations of transporter proteins in plasma membrane fractions determined using the bead homogenizer were higher than those determined using the Dounce homogenizer. Meanwhile, in kidney tissues, the plasma membrane fractions were enriched in transporters localized in the brush-border membrane to the same degree for both the homogenizers; however, the membrane fractions obtained using either homogenizer were not enriched in Na+/K+-ATPase and transporters localized in the basolateral membrane. These results indicate that fractionation, using the bead homogenizer, yielded transporter-enriched plasma membrane fractions from mouse liver and kidney tissues; however, no enrichment of basolateral transporters was observed in plasma membrane fractions prepared from kidney tissues.

BeadBug™ Microtube homogenizer, 115V

D1030 Benchmark Scientific 1 each 980.8 EUR

BeadBug™ Microtube homogenizer, 230V

D1030-E Benchmark Scientific 1 PC 980.8 EUR

BeadBug 6, Six Position Homogenizer, 115V

D1036 Benchmark Scientific 1 each 2617.7 EUR

BeadBug 6, Six Position Homogenizer, 230V

D1036-E Benchmark Scientific 1 PC 2617.7 EUR

BeadBug 6 Six Position Homogenizer 230V

HOM3018 Scientific Laboratory Supplies EACH 3400.8 EUR

BeadBlaster™ Microtube homogenizer, 115V

D2400 Benchmark Scientific 1 each 9275.1 EUR

BeadBlaster™ Microtube homogenizer, 230V

D2400-E Benchmark Scientific 1 PC 9275.1 EUR

BeadBlaster Microtube homogenizer 230V

HOM3012 Scientific Laboratory Supplies EACH 12158.4 EUR

BeadBug Microtube homogenizer

SLS1402 Scientific Laboratory Supplies EACH 1448.4 EUR

BeadBlaster™ 24 Refrigerated Microtube Homogenizer, 115V

D2400-R Benchmark Scientific 1 each 14802.1 EUR

BeadBlaster™ 24 Refrigerated Microtube Homogenizer, 230V

D2400-R-E Benchmark Scientific 1 each 14802.1 EUR

BeadBlaster 24 Refrigerated Microtube Homogenizer 230V

HOM3078 Scientific Laboratory Supplies EACH 22038 EUR

Homogenizer stand for Agile? Hand-held homogenizer

AHM1-VS ACTGene each 634.8 EUR

Homogenizer stand for Agile™ Hand-held homogenizer

AHM1 ACTGene VS 414.21 EUR

Microtube homogenizer, 115V

BCM1200 Bio Basic 1 pcs, 1 UNIT 11944.61 EUR

Microtube homogenizer, 115V

BCM1201 Bio Basic 1 pcs, 1 UNIT 1224.14 EUR

Dounce Tissue Homogenizer

1998-1 Biovision each 470.4 EUR

Pulse 150 Ultrasonic Homogenizer

HOM3082 Scientific Laboratory Supplies EACH 3891.6 EUR

D1000 Homogenizer incl 5mm and 7mm generators 230V

HOM3064 Scientific Laboratory Supplies EACH 1689.6 EUR

Pulse 150™ Ultrasonic Homogenizer with 6mm horn and soundproof box, 120V

DP0150 Benchmark Scientific 1 each 3428.4 EUR

Leave a Comment