Validity evidence for an instrument for cognitive load for virtual didactic sessions

Background: COVID necessitated the shift to virtual resident instruction. The challenge of learning via virtual modalities has the potential to increase cognitive load. It is important for educators to reduce cognitive load to optimize learning, yet there are few available tools to measure cognitive load. The objective of this study is to identify and provide validity evidence following Messicks’ framework for an instrument to evaluate cognitive load in virtual emergency medicine didactic sessions.
Methods: This study followed Messicks’ framework for validity including content, response process, internal structure, and relationship to other variables. Content validity evidence included: (1) engagement of reference librarian and literature review of existing instruments; (2) engagement of experts in cognitive load, and relevant stakeholders to review the literature and choose an instrument appropriate to measure cognitive load in EM didactic presentations. Response process validity was gathered using the format and anchors of instruments with previous validity evidence and piloting amongst the author group. A lecture was provided by one faculty to four residency programs via ZoomTM. Afterwards, residents completed the cognitive load instrument. Descriptive statistics were collected; Cronbach’s alpha assessed internal consistency of the instrument; and correlation for relationship to other variables (quality of lecture).
Results: The 10-item Leppink Cognitive Load instrument was selected with attention to content and response process validity evidence. Internal structure of the instrument was good (Cronbach’s alpha = 0.80). Subscales performed well-intrinsic load (α = 0.96, excellent), extrinsic load (α = 0.89, good), and germane load (α = 0.97, excellent). Five of the items were correlated with overall quality of lecture (< 0.05).
Conclusions: The 10-item Cognitive Load instrument demonstrated good validity evidence to measure cognitive load and the subdomains of intrinsic, extraneous, and germane load. This instrument can be https://biodas.org/ used to provide feedback to presenters to improve the cognitive load of their presentations.

Assessment of the influence of gluten quality on highland barley dough sheet quality by different instruments

  • This study was to compare the results of texture analyzer with those of farinograph and extensograph and determine whether texture analyzer could be used to evaluate the processing quality of highland barley flour (HBF) dough sheet. The farinograph and extensograph tests were used to determine the reconstituted flour properties, a texture analyzer was applied to measure the tensile strength of HBF dough sheet, and the content of glutenin macropolymer (GMP), free sulfhydryl (-SH) and secondary structure of protein and microstructure in HBF dough sheet were investigated. Furthermore, correlations between these parameters were determined by regression analysis and Pearson correlation coefficient.
  • It was suggested that the reconstituted flours with a higher gluten index showed a higher farinograph quality number (FQN) and greater maximum resistance to extension (Rm ). HBF dough sheets with higher gluten index possessed higher GMP and lower free -SH contents, a more ordered secondary structure of protein, resulting in a more compact gluten network and a stronger tensile strength (TS).
  • The regression and correlation analysis showed that TS was positively correlated with FQN and Rm . In addition, it was significantly correlated with the content of GMP, -SH, secondary structure of protein and gluten network. It was concluded that texture analyzer could be an alternative approach to evaluate the processing quality of HBF dough sheet. Moreover, the gluten index of flours could be used to predict the processing quality of HBF dough sheet. This article is protected by copyright. All rights reserved.

Development of an Instrument to Assess the Stability of Cementless Femoral Implants Using Vibration Analysis During Total Hip Arthroplasty

Objective: The level of primary implant fixation in cementless total hip arthroplasty is a key factor for the longevity of the implant. Vibration-based methods show promise for providing quantitative information to help surgeons monitor implant fixation intraoperatively. A thorough understanding of what is driving these changes in vibrational behavior is important for further development and improvement of these methods. Additionally, an instrument must be designed to enable surgeons to leverage these methods. This study addresses both of these issues.
Method: An augmented system approach was used to develop an instrument that improves the sensitivity of the vibrational method and enables the implementation of the necessary excitation and measurement equipment. The augmented system approach took into account the dynamics of the existing bone-implant system and its interaction with the added instrument.
Results: Two instrument designs are proposed, accompanied by a convergence-based method to determine the insertion endpoint. The modal strain energy density distribution was shown to affect the vibrational sensitivity to contact changes in certain areas.
Conclusion: The augmented system approach led to an instrument design that improved the sensitivity to changes in the proximal region of the combined bone-implant-instrument system. This fact was confirmed both in silico and in vitro. Clinical Impact: The presented method and instruments address practical intraoperative challenges and provide perspective to objectively support the surgeon’s decision-making process, which will ensure optimal patient treatment.

Validation of the PAM-13 instrument in the Hungarian general population 40 years old and above

Background: Patient activation comprises the skills, knowledge and motivation necessary for patients’ effective contribution to their care. We adapted and validated the 13-item Patient Activation Measure (PAM-13) in the ≥ 40 years old Hungarian general population.
Methods: A cross-sectional web survey was conducted among 900 respondents selected from an online panel via quota sampling. After 10 days, the survey was repeated on 100 respondents. The distribution, internal consistency, test-retest reliability, factor structure, convergent, discriminant and known-groups validity of PAM-13 were assessed according to the COSMIN guidelines.
Results: The sample comprised 779 respondents. Mean (± SD) age was 60.4 ± 10.6 years, 54% were female and 67% had chronic illness. Mean (± SD) PAM-13 score was 60.6 ± 10.0. We found good internal consistency (Cronbach alpha: 0.77), moderate test-retest reliability (ICC: 0.62; n = 75), a single-factor structure and good content validity: PAM-13 showed moderate correlation with the eHealth Literacy Scale (r = 0.40), and no correlation with age (r = 0.02), education (r = 0.04) or income (ρ = 0.04). Higher PAM-13 scores were associated with fewer lifestyle risks (p < 0.001), more frequent health information seeking (p < 0.001), participation in patient education (p = 0.018) and various online health-related behaviours. When controlling for health literacy, sociodemographic factors and health status, the association of higher PAM-13 scores with overall fewer lifestyle risks, normal body mass index, physical activity and adequate diet remained significant. Similar properties were observed in the subgroup of participants with chronic morbidity, but not in the age group 65+.
Conclusion: PAM-13 demonstrated good validity in the general population. Its properties in clinical populations and the elderly as well as responsiveness to interventions warrant further research.

Accuris

E3000-E Benchmark Scientific 1 PC 845.75 EUR

Accuris

W1000-100 Benchmark Scientific 1 PC 102.7 EUR

Accuris

W1000-1000 Benchmark Scientific 1 PC 186.08 EUR

Accuris

W1000-200 Benchmark Scientific 1 PC 110.68 EUR

Accuris

W1000-500 Benchmark Scientific 1 PC 125.9 EUR

Accuris

W1005-100 Benchmark Scientific 1 PC 80.23 EUR

Accuris

W1005-1000 Benchmark Scientific 1 PC 121.55 EUR

Accuris

W1005-200 Benchmark Scientific 1 PC 85.3 EUR

Accuris

W1005-2000 Benchmark Scientific 1 PC 159.25 EUR

Accuris

W1100-200 Benchmark Scientific 1 PC 343.4 EUR

Accuris

W1101-6-100 Benchmark Scientific 1 PC 404.3 EUR

Accuris

W1105-20 Benchmark Scientific 1 PC 76.6 EUR

Accuris

W1105-500 Benchmark Scientific 1 PC 99.08 EUR

Accuris

W1105-9-1000 Benchmark Scientific 1 PC 186.08 EUR

Accuris

W3100-120-E Benchmark Scientific 1 PC 1513.55 EUR

Accuris

W3100-210-E Benchmark Scientific 1 PC 1748.45 EUR

Accuris

W3100A-120-E Benchmark Scientific 1 PC 1604.03 EUR

Accuris

W3100A-210-E Benchmark Scientific 1 PC 1852.85 EUR

Accuris

W3200-120-E Benchmark Scientific 1 PC 852.35 EUR

Accuris

W3200-1200-E Benchmark Scientific 1 PC 852.35 EUR

Accuris

W3200-320-E Benchmark Scientific 1 PC 904.55 EUR

Accuris

W3200-3200-E Benchmark Scientific 1 PC 904.55 EUR

Differential gene expression and chemical patterns of an intertidal crab inhabiting a polluted port and an adjacent marine protected area

The acquisition of data to safeguard marine protected areas located close to ports is important in order to develop plans that allow effective protection from pollution as well as sustainable development of the port. The area Secche della Meloria is a Marine Protected Area (MPA-MEL) three miles from Livorno Harbour (LH), which is characterized by a long history of pollution. Here we studied the bioaccumulation and transcriptomic patterns of the marbled crab, Pachygrapsus marmoratus (Fabricius, 1787) (Crustacea; Brachyura, Grapsidae), inhabiting the two selected sites.
Results showed that the two crab populations are significantly different in their chemical composition of trace elements and Polyciclic Aromatic Hydrocarbons (PAHs), and gene expression patterns (1280 DEGs). Enrichment analysis indicated that crabs at LH had the highest stress response genes, and they were associated with higher levels of bioaccumulation detected in body tissues. We are confident that the significant differential gene expression profiles observed between crabs, characterized by https://biodas.org/ significant chemical differences, is associated with responses to contaminant exposure.

Comparison of Perioperative Outcomes Between Single-Port and Multi-Port Robotic Adrenalectomy

Background: Single-port (SP) robotic surgery has been utilized in several surgical procedures. We aim to describe our institution’s approach and perioperative experience with SP robotic adrenalectomy and compare it to the traditional multi-port (MP) approach.
Methods: We retrospectively reviewed all patients who underwent robotic adrenalectomy by a single surgeon between March 2019 and March 2020. Patient demographic, perioperative factors, and pathologic outcomes were recorded and analyzed using t-tests, chi-square, or Fisher’s exact tests.
Results: Thirty-six patients underwent SP (n = 11) and MP (n = 25) robotic adrenalectomy. Age, body mass index, gender, operative time, major Clavien-Dindo complications, and margin status showed no differences. Patients undergoing SP adrenalectomy had a lower estimated blood loss (18.1 ± 13.0 vs 65.6 ± 95.0 cc, P = .02) and smaller lesion size (2.8 ± 1.3 vs 4.1 ± 1.8 cm, P = .04) compared to those undergoing MP.
Conclusions: SP adrenalectomy appears to be a feasible approach in select adrenal masses. Further studies are needed to establish its safety and cost effectiveness.

Analysis of ocular injury 1-year outcome in survivors of Beirut Port ammonium nitrate blast

Purpose: Ascertain the 1-year outcome of patients who sustained open eye injuries from the Beirut Port ammonium nitrate (AN) explosion, one of the most powerful non-nuclear explosions in history.
Methods: Retrospective chart review of the operated eyes in 2 major eye hospitals.
Results: Out of 42 patients with open globe injury that was originally sutured, 29 patients (34 eyes) were followed at the 1-year mark. The initial vision in logMAR (mean ± SD) was 2.93 ± 0.87 (hand motion equivalent) and the final vision was 1.80 ± 1.47 (counting finger 2 m equivalent). No light perception (NLP) vision was noted in 12 eyes on presentation and 10 eyes remained so, while 2 eyes reached light perception (LP) vision. Eight eyes had an intraoperative expulsive choroidal hemorrhage (7 NLP and 1 LP both pre- and postoperatively), and 6 of the 8 developed phthisis. All eyes that developed phthisis had NLP preoperatively and postoperatively. Ocular Trauma Score (OTS) correlated inversely with both initial and final vision (p < 0.001). Zone of injury inversely correlated with initial vision (p = 0.02) and positively with final vision (p < 0.001). Final vision was significantly worse in zone 3 vs. zones 1 and 2 (3.2 ± 0.5) vs. 0.9 ± 1.1) (p < 0.001) injuries, as was the initial vision (3.3 ± 0.5 vs. 2.7 ± 0.8; p = 0.002).
Conclusion: The OTS, which provides prognostic information for serious ocular trauma, also yields valuable prognostic information for AN-associated ocular injuries. Expulsive choroidal hemorrhage and NLP vision at presentation remain very poor prognostic signs.

Da Vinci SP Single-Port Robotic Surgery in Gynecologic Tumors: Single Surgeon’s Initial Experience with 100 Cases

Purpose: To report preliminary experience of single-port robotic surgery using the da Vinci SP surgical system in gynecologic tumors.
Materials and methods: This was a retrospective study on 100 consecutive patients who underwent da Vinci SP single-port robotic surgery between November 2018 and January 2021. All procedures were performed by an experienced gynecologic surgeon using a single 2.5-cm umbilical incision.
Results: Of the 100 cases, the procedures included myomectomy (n=76), hysterectomy (n=2), endometrial cancer surgical staging (n=14), radical hysterectomy (n=3), radical trachelectomy (n=3), and ovarian cystectomy (n=2). None of the cases was converted to robotic multiport or open surgery. The median docking time was 5.0 minutes [interquartile range (IQR), 3.0-7.0], the median console time was 107.5 minutes (IQR, 78.7-155.8), and the median total operation time was 250.0 minutes (IQR, 215.0-310.0). The median estimated blood loss was 50.0 mL (IQR, 30.0-100.0), and the median change in hemoglobin level was 0.8 g/dL (IQR, 0.3-1.3). The median pain scores rated on a numerical rating scale immediately after and at 6, 12, and 24 hours after surgery were 5, 2, 2, and 2, respectively. The mean duration of postoperative hospitalization was 2.8 days.
Conclusion: Da Vinci SP single-port robotic surgery was successfully performed in various gynecologic tumors without significant complications. Therefore, this surgical system could be applied in patients who want precise gynecologic surgery while minimizing surgical incision.

Anxiety, Depression and PTSD in Children and Adolescents following the Beirut Port Explosion

Background: On August 4, 2020, Beirut’s port experienced one of the strongest non-nuclear explosions in history, killing approximately 200 people, displacing 300,000 persons, and injuring more than 1000 children.
Methods: An online anonymous survey assessed the prevalence of probable mental health disorders (MHDs) and impact of blast-related and other factors controlling for sociodemographics in 801 children aged 8 to 17 years old.
Results: About two thirds (64%) were screened positive for probable anxiety using the Screen for Childhood Anxiety Related Disorder, 52% for probable PTSD using CRIES-13, and 33% for probable depression using the Mood and Feelings Questionnaire (MFQ). Children who resided farthest way from the explosion site or were not in Beirut during blast had a significantly lower odds of anxiety and PTSD. Children who sustained any physical injury (vs. none) or witnessed casualties (vs. not) were at higher odds for PTSD. Children of parents who reported that their homes sustained minor damages (vs. no damages at all) were at higher odds for anxiety and PTSD, and temporary displacement (vs. none) increased odds of PTSD only. Poorer perceived economic status, poorer academic performance, having a family member injured in the blast, and prior mental health care seeking were associated with higher odds for all MHDs.
Conclusion: Our study, the only one to document the mental health impact of the Beirut Port explosion on children, highlights the critical need for an emergency mental health response, prioritizing disadvantaged communities and children with prior mental health problems.

8-Port Manifolds

9621 Genesee Scientific 10 Manifolds/Unit 115 EUR

Y-Manifolds 5/pk

1292212 Atto 3unit 264 EUR

PORT-CCR1 Plasmid

PVT15911 Lifescience Market 2 ug 325 EUR

wide horizontal unit 23.5x40 cm ex. port

EHS3620-SYS Consort ea 944 EUR

Recombinant Influenza A H3N2 (Port Chalmers/ 1/ 1973) Nucleoprotein, His-SUMO, E.coli-100ug

QP7624-ec-100ug EnQuireBio 100ug 707 EUR

Recombinant Influenza A H3N2 (Port Chalmers/ 1/ 1973) Nucleoprotein, His-SUMO, E.coli-10ug

QP7624-ec-10ug EnQuireBio 10ug 326 EUR

Recombinant Influenza A H3N2 (Port Chalmers/ 1/ 1973) Nucleoprotein, His-SUMO, E.coli-1mg

QP7624-ec-1mg EnQuireBio 1mg 2303 EUR

Recombinant Influenza A H3N2 (Port Chalmers/ 1/ 1973) Nucleoprotein, His-SUMO, E.coli-200ug

QP7624-ec-200ug EnQuireBio 200ug 1115 EUR

Recombinant Influenza A H3N2 (Port Chalmers/ 1/ 1973) Nucleoprotein, His-SUMO, E.coli-500ug

QP7624-ec-500ug EnQuireBio 500ug 1514 EUR

Recombinant Influenza A H3N2 (Port Chalmers/ 1/ 1973) Nucleoprotein, His-SUMO, E.coli-50ug

QP7624-ec-50ug EnQuireBio 50ug 435 EUR

Comparative thermoresistance of two biological indicators for monitoring steam autoclaves. 3. Comparison performed at 121 degrees C in a hospital prevacuum steam sterilizer

According to Pharmacopoea Nordica, steam autoclaves should be regularly monitored by a specific Swedish preparation of Bacillus stearothermophilus spores. If another biological indicator (BI) is used for such a control, it should first be calibrated against the Swedish BI (SBI) and the two BIs should be equally thermoresistant. Attest No. 1262 BI (ABI) has previously been shown to be more thermoresistant than the SBI at 134 degrees C, saturated steam. The purpose of the present study was to compare the thermoresistance of the SBI and the ABI at 121 degrees C, saturated steam and prevacuum. Seven hundred and twenty units of each BI were heat-exposed in an Emmer 760 litre prevacuum, pressure-pulsing steam autoclave.
After prevacuum with steam injection (manual or automatic preconditioning), the following incremental heat exposure times were used in triplicate (20 simultaneously tested units of each BI in each cycle) according to a randomized scheme: 5, 6 1/2, 8, 9 1/2, 11, 12 1/2, 14 and 15 min. The intra-chamber pressure and temperature were continuously monitored throughout the test and equilibration cycles.
The heat-exposed BI units were cultivated and read as recommended by the manufacturers. SBI and ABI showed a survival-time of 8 min and 11 min respectively, and a kill-time between 14 min and 15 min for both BIs. Thus, the ABI had the narrower survival-kill window. Probit analysis testing of the results showed that the difference in thermoresistance, at 121 degrees C, saturated steam and https://biodas.org/ prevacuum between Attest No. 1262 BI and the Swedish BI mentioned in Pharmacopea Nordica was not statistically significant.

Comparative thermoresistance of two biological indicators for monitoring steam autoclaves. 2. Comparison performed at 134 degrees C in a hospital prevacuum steam sterilizer

The thermoresistance of various lots of two biological indicators (BIs) for steam sterilization control, a Scandinavian BI (SBI) and the Attest BI (ABI), were compared during sterilization cycles in a hospital prevacuum (pressure-pulsing) steam autoclave at 134 degrees C, saturated steam. ABI No. 1242, ABI No. 1262 (its replacement) and incremental heat exposure times between 0 s and 180 s were used. The intrachamber temperature and pressure were continuously measured and monitored throughout the sterilization cycles.
The results showed that both of the ABIs were more thermoresistant than the SBI, giving 33.1% (ABI No. 1242), 18.9% (ABI No. 1262), and 0% (SBI) autoclave survivors. Because the time needed to reach 134 degrees C (preconditioning time) increased as the day progressed, and varied from day to day, correlation between individual incremental heat exposure times and the number of surviving BI units was not possible. Standardized test conditions are necessary for a true comparison of BIs.

Ozone: A Novel Sterilizer for Personal Protective Equipment

Objective: Personal protective equipment (PPE) is urgently sought during public health crises. It is necessary for the safety of both the patient and the healthcare professional. Yet during the recent COVID-19 pandemic, PPE scarcity in many countries, including the United States, has impacted the level of care for patients and the safety of healthcare personnel. Additionally, the implementation of mandatory mask mandates for the general public in many countries forced individuals to either reuse PPE, which can contribute to poor hygiene, or buy PPE in bulk and thereby contribute to the scarcity of PPE. In this study, we investigate the possibility of using a cost-effective ozone sterilization unit on contaminated N95 masks as an alternative to current sterilization methods.
Method: This protocol examined ozone’s ability to decontaminate N95 mask fabric that was exposed to a surrogate virus (Escherichia coli bacteriophage MS2). Once the sterilization unit achieves an ozone concentration of ~30 ppm, a 60-minute or 120-minute sterilization cycle commences. Following the sterilization cycle, we investigated the amount of viable virus on the slide using a viral plaque assay and compared it to a non-sterilized, control slide. Furthermore, we carried out trials to investigate the safety of an ozone sterilization device, by measuring the levels of ozone exposure that individuals may experience when operating the sterilization unit post-cycle.
Results: We showed that a 120-minute sterilization cycle at ~30 ppm achieves a 3-log reduction in viral activity, thereby complying with industry and U.S. Food and Drug Administration (FDA) standards. Further, we demonstrated that when following our protocol, the ozone exposure levels for a simple sterilization unit to be used at home complied with federal and industry standards.
Conclusion: Ozone may have the potential to decontaminate masks and other PPE.

Monitoring the Effective Sterilization of Low-Temperature Hydrogen Peroxide Gas Plasma Sterilizers in 58 Hospitals – 22 PLADs, China, June 2015-December 2019

What is already known on this topic?: Hydrogen peroxide sterilizeation is widely used for luminal devices. However, the low penetrability of the sterilant is of major concern.
What is added by this report?: This report investigated the effective sterilization of low-temperature hydrogen peroxide gas plasma sterilizers and compared the applicability of different biological monitoring methods based on medical luminal devices.
What are the implications for public health practice?: It is recommended to use a biological process challenge device for monitoring the sterilization of luminal devices with low-temperature hydrogen peroxide gas plasma sterilizers.

Portable sterilizer with microbe content detection device

  • Background: Infectious diseases, such as the latest COVID pandemic, caused by microorganisms like bacteria and virus, wreak havoc shaking human civilization with its rapid infection rate, and high number of mortalities. In case of a contagious disease, the virus can survive on any surface over a period of time and can be transferred to the human host through touching those surfaces unknowingly. Cleaning those possible surfaces to which these microorganisms can cling onto is one of the major ways to curb the spread. The aim of this study was to design a sterilizer which can clean such surfaces of daily used items easily within a certain period of time and can assess the cleaning efficacy by estimating the presence of microbes before and after sanitization.
  • Method development: To achieve this goal, we propose a portable sterilization unit that contains a sterilization chamber fitted with a microbe content detector. The sterilization chamber will cleanse the surfaces off the microbes using ultraviolet radiation. The chamber can be portable and at the same time big enough to accommodate items of daily use, like watch, wallet, clothes, utensils to even foods for single-house application. The microbe content detector will detect the success of the sterilization procedure by examining the time-lapse laser speckle images captured by a high-speed camera by mean of image processing algorithm, such that the user can determine whether further sterilization is required.
  • Conclusions: Microbe content detection device associated with the conventional sterilization procedure will give an assessment of the effectiveness of the sterilization. Successful implementation of sterilization for a wide variety of items of everyday use aided with microbe content detection technique is first of its kind and should be an effective tool for use in large communities, offices and public places for effective sterilization to help fight against the spread of infectious diseases.
Product not found

Design and development of heater control circuit without temperature sensor for monitoring hydrogen in argon

A thin film based tin oxide sensor is developed to monitor low levels of hydrogen (concentration ranging from 5 to 75 ppm) in the cover gas plenum of the fast breeder test reactor. The heater and the sensor patterns are integrated on a miniature alumina substrate, and necessary electrical leads are incorporated into it. For proper functioning of the sensor, the heater has to be maintained at a constant temperature of 350 °C. This paper gives an outline of the electronics developed to measure the sensor signal and to control the heater temperature.
The major challenge in this work is that there was no provision for embedding a temperature sensor on the heater surface due to physical constraints. This constrained the maintenance of a constant heater temperature for the proper functioning of the sensor. This led us to develop and demonstrate a heater control circuit without a temperature sensor to maintain a fixed temperature for https://biodas.org/ monitoring hydrogen in argon, and electronics for the above-mentioned circuitry is discussed.

ERC-ESICM guidelines on temperature control after cardiac arrest in adults

  • The aim of these guidelines is to provide evidence‑based guidance for temperature control in adults who are comatose after resuscitation from either in-hospital or out-of-hospital cardiac arrest, regardless of the underlying cardiac rhythm. These guidelines replace the recommendations on temperature management after cardiac arrest included in the 2021 post-resuscitation care guidelines co-issued by the European Resuscitation Council (ERC) and the European Society of Intensive Care Medicine (ESICM).
  • The guideline panel included thirteen international clinical experts who authored the 2021 ERC-ESICM guidelines and two methodologists who participated in the evidence review completed on behalf of the International Liaison Committee on Resuscitation (ILCOR) of whom ERC is a member society. We followed the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach to assess the certainty of evidence and grade recommendations. The panel provided suggestions on guideline implementation and identified priorities for future research. The certainty of evidence ranged from moderate to low.
  • In patients who remain comatose after cardiac arrest, we recommend continuous monitoring of core temperature and actively preventing fever (defined as a temperature > 37.7 °C) for at least 72 h. There was insufficient evidence to recommend for or against temperature control at 32-36 °C or early cooling after cardiac arrest. We recommend not actively rewarming comatose patients with mild hypothermia after return of spontaneous circulation (ROSC) to achieve normothermia. We recommend not using prehospital cooling with rapid infusion of large volumes of cold intravenous fluids immediately after ROSC.

Thermal Model of an Omnimagnet for Performance Assessment and Temperature Control

An Omnimagnet is an electromagnetic device that enables remote magnetic manipulation of devices such as medical implants and microrobots. It is composed of three orthogonal nested solenoids with a ferromagnetic core at the center. Electrical current within the solenoids leads to undesired temperature increase within the Omnimagnet. If the temperature exceeds the melting point of the wire insulation, device failure may occur. Thus, a study of heat transfer within an Omnimagnet is a necessity, particularly to maximize the performance of the device. A transient heat transfer model that incorporates all three heat transfer modes is proposed and experimentally validated with an average normalized root-mean-square error of less than 4% (data normalized by temperature in degree celsius). The transient model is not computationally expensive and is applicable to Omnimagnets with different structures. The code is applied to calculate the maximum safe operational time at a fixed input current or the maximum safe input current for a fixed time interval. The maximum safe operational time and maximum safe input current depend on size and structure of the Omnimagnet and the lowest critical temperature of all the Omnimagnet materials. A parametric study shows that increasing convective heat transfer during cooling, and during heating with low input currents, is an effective method to increase the maximum operational time of the Omnimagnet. The thermal model is also presented in a state-space equation format that can be used in a real-time Kalman filter current controller to avoid device failure due to excessive heating.

Integrated Temperature and Position Sensors in a Shape-Memory Driven Soft Actuator for Closed-Loop Control

Soft actuators are a promising option for the advancing fields of human-machine interaction and dexterous robots in complex environments. Shape memory alloy wire actuators can be integrated into fiber rubber composites for highly deformable structures. For autonomous, closed-loop control of such systems, additional integrated sensors are necessary. In this work, a soft actuator is presented that incorporates fiber-based actuators and sensors to monitor both deformation and temperature.
The soft actuator showed considerable deformation around two solid body joints, which was then compared to the sensor signals, and their correlation was analyzed. Both, the actuator as well as the sensor materials were processed by braiding and tailored fiber placement before molding with silicone rubber. Finally, the novel fiber-rubber composite material was used to implement closed-loop control of the actuator with a maximum error of 0.5°.

Surface temperature controls the pattern of post-earthquake landslide activity

The patterns and controls of the transient enhanced landsliding that follows strong earthquakes remain elusive. Geostatistical models can provide clues on the underlying processes by identifying relationships with a number of physical variables. These models do not typically consider thermal information, even though temperature is known to affect the hydro-mechanical behavior of geomaterials, which, in turn, controls slope stability. Here, we develop a slope unit-based multitemporal susceptibility model for the epicentral region of the 2008 Wenchuan earthquake to explore how land surface temperature (LST) relates to landslide patterns over time. 3
We find that LST can explain post-earthquake landsliding while it has no visible effect on the coseismic scene, which is dominated by the strong shaking. Specifically, as the landscape progressively recovers and landslide rates decay to pre-earthquake levels, a positive relationship between LST and landslide persistence emerges. This seems consistent with the action of healing processes, capable of restoring the thermal sensitivity of the slope material after the seismic disturbance. Although analyses in other contexts (not necessarily seismic) are warranted, we advocate for the inclusion of thermal information in geostatistical modeling as it can help form a more physically consistent picture of slope stability controls.

Positive control tissue section for each antibody; Based on availability INQUIRE

Control-Slides Innovex Set of 5 176 EUR

pt1000 temperature compensator

ST10N Consort ea 94 EUR

pt1000 temperature compensator

ST20N Consort ea 98 EUR

External Temperature Probe

BSH-TP1 Benchmark Scientific 1 PC 429.53 EUR

pt1000 temperature compensator, s8

ST21Y Consort ea 104 EUR

DRY BATH EXTERNAL TEMPERATURE SENSOR

D1300-PROBE CORNING 1/pk 52 EUR

SIDEARM FITTING, SENSOR, TEMPERATURE PROBES

4519-128 CORNING 1/pk 200 EUR

Agarose II, Low Gelling Temperature

CH002 ABM 25 g 229 EUR

Agarose II, Low Gelling Temperature

CH003 ABM 100 g 438 EUR

Optional Temperature Probe (H3760 Series)

H3760-TP Benchmark Scientific 1 PC 127.64 EUR

Control siRNA Vector (pGB-control)

9500C-20 Biovision 338 EUR

High Temperature Requirement Factor A4 (HTRA4) Antibody

20-abx176843 Abbexa
  • 1316.00 EUR
  • 620.00 EUR
  • 1 mg
  • 200 ug

High Temperature Requirement Factor A4 (HTRA4) Antibody

20-abx172814 Abbexa
  • 926.00 EUR
  • 467.00 EUR
  • 1 mg
  • 200 ug

Lenti-SV40 (tsA58 temperature sensitive mutant) Lentivirus

LV629 ABM 10 ml 811 EUR

Quality Control

abx098966-1vial Abbexa 1 vial 300 EUR

pMD18- Control

PVT10563 Lifescience Market 2 ug 266 EUR

pMD19- Control

PVT10564 Lifescience Market 2 ug 266 EUR

Human High Temperature Requirement Protein A2 (HTRA2) Antibody

35727-05111 AssayPro 150 ug 261 EUR

CORNING® 45MM ETFE HIGH TEMPERATURE POURING RING

1395-45HTR CORNING 50/pk 107 EUR

Human High Temperature Requirement Factor A4 (HTRA4) Protein

20-abx653745 Abbexa
  • 578.00 EUR
  • 258.00 EUR
  • 1720.00 EUR
  • 690.00 EUR
  • 425.00 EUR
  • 100 ug
  • 10 ug
  • 1 mg
  • 200 ug
  • 50 ug

High Temperature Requirement Factor A1 (HTRA1) Antibody (Biotin)

20-abx271861 Abbexa
  • 481.00 EUR
  • 244.00 EUR
  • 1428.00 EUR
  • 676.00 EUR
  • 356.00 EUR
  • 100 ug
  • 10 ug
  • 1 mg
  • 200 ug
  • 50 ug

Rat High temperature requirement factor A3 ELISA kit

E02H0012-192T BlueGene 192 tests 1270 EUR

Evaluation of a Wearable Non-Invasive Thermometer for Monitoring Ear Canal Temperature during Physically Demanding (Outdoor) Work

Aimed at preventing heat strain, health problems, and absenteeism among workers with physically demanding occupations, a continuous, accurate, non-invasive measuring system may help such workers monitor their body (core) temperature. The aim of this study is to evaluate the accuracy and explore the usability of the wearable non-invasive Cosinuss° °Temp thermometer. Ear canal temperature was monitored in 49 workers in real-life working conditions. After individual correction, the results of the laboratory and field study revealed high correlations compared to ear canal infrared thermometry for hospital use. After performance of the real-life working tasks, this correlation was found to be moderate.
It was also observed that the ambient environmental outdoor conditions and personal protective clothing influenced the accuracy and resulted in unrealistic ear canal temperature outliers. It was found that the Cosinuss° °Temp thermometer did not result in significant interference during work. Therefore, it was concluded that, without a correction factor, the Cosinuss° °Temp thermometer is inaccurate. Nevertheless, with a correction factor, the reliability of this wearable ear canal thermometer was confirmed at rest, but not in https://biodas.org/ outdoor working conditions or while wearing a helmet or hearing protection equipment.

Mobile Health-Based Thermometer for Monitoring Wound Healing After Endovascular Therapy in Patients With Chronic Foot Ulcer: Prospective Cohort StudY

Background: Foot temperature may increase after endovascular therapy, but the relationship between foot temperature and wound healing is unclear.
Objective: This study was performed to evaluate the feasibility of a mobile health (mHealth)-based thermometer for foot temperature monitoring in patients with chronic foot ulcer before and after endovascular therapy and to determine the association between temperature change and wound healing time.
Methods: This was a prospective cohort study. Patients who had a chronic foot ulcer (>3 months) and underwent endovascular therapy between June 2019 and December 2019 were included. The participants received standard medical care and endovascular therapy for revascularization. The mHealth-based thermometer, composed of 4 temperature-sensing chips, was put on the foot before and after endovascular therapy. Data from the chips were transferred to an associated mobile phone app via Bluetooth. Wound healing time was estimated using the Kaplan-Meier method, and the associations between baseline characteristics and clinical outcomes were evaluated using a Cox proportional hazard model.
Results: A total of 163 patients with chronic foot ulcer who underwent endovascular therapy were enrolled and followed up until wound healing was complete or for 180 days. The mean foot temperature before endovascular therapy was 30.6 (SD 2.8 °C). Foot temperature increased significantly (mean 32.1 °C, SD 2.8 °C; P=.01) after the procedure. Wound healing time was significantly different in the Kaplan-Meier curves of the patient group with temperature changes ≥2 °C and the group with temperature changes ≤2 °C (log-rank P<.001). A foot temperature increase ≥2 °C after endovascular therapy was associated with increased wound healing in univariate analysis (hazard ratio [HR] 1.78, 95% CI 1.24-2.76, P=.02), and the association remained significant in multivariate analysis (HR 1.69, 95% CI 1.21-2.67, P=.03).
Conclusions: The mHealth-based thermometer was feasible and useful for foot temperature monitoring, which may provide health care professionals with a new endpoint for endovascular therapy. Foot temperature increases ≥2 °C after endovascular therapy were associated with faster wound healing in patients with chronic foot ulcer. Further studies are needed, however, to confirm these findings.

Tympanic thermometers support fast and accurate temperature monitoring in acute and alternative care

This article explores body temperature and the physiological process of thermoregulation. Normal body temperature and body temperature changes are discussed, including comorbidities associated with body temperature and signs of hyperthermia and hypothermia, and the factors that affect intraoperative temperature regulation.
The evidence base behind thermometry is discussed and is applied to contemporary clinical conditions and symptoms, including: sepsis and suspected COVID-19. After discussing clinical considerations and regulations that encompass thermometry, three case studies present the use of the Genius 3 Tympanic Thermometer in clinical practice, with user feedback supporting its benefits, which include speed, accuracy and ease of use.

Mitochondria-Anchored Molecular Thermometer Quantitatively Monitoring Cellular Inflammations

Temperature in mitochondria can be a critical indicator of cell metabolism. Given the highly dynamic and inhomogeneous nature of mitochondria, it remains a big challenge to quantitatively monitor the local temperature changes during different cellular processes. To implement this task, we extend our strategy on mitochondria-anchored thermometers from “on-off” probe Mito-TEM to a ratiometric probe Mito-TEM 2.0 based on the Förster resonance energy transfer mechanism. Mito-TEM 2.0 exhibits not only a sensitive response to temperature through the ratiometric changes of dual emissions but also the specific immobilization in mitochondria via covalent bonds.
Both characters support accurate and reliable detection of local temperature for a long time, even in malfunctioning mitochondria. By applying Mito-TEM 2.0 in fluorescence ratiometric imaging of cells and zebrafishes, we make a breakthrough in the quantitative visualization of mitochondrial temperature rises in different inflammation states.

Non-invasive and wearable thermometer for continuous monitoring of core body temperature under various convective conditions

We describe the design of a thermometer that can be worn during everyday activities for monitoring core body temperature (CBT) at the skin surface. This sensor estimates the CBT by measuring the heat flux from the body core based on a thermal conductive model. The heat flux is usually affected by the ambient convective conditions (e.g. air conditioner or posture), which in turn affects the model’s accuracy. Thus, we analytically investigated heat conduction and designed a sensor interface that would be robust to convection changes. We performed an in vitro experiment and a preliminary in vivo experiment. The accuracy of CBT in an in vitro experiments was 0.1°C for convective values ranging from 0 to 1.2 m/s. The wearable thermometer has high potential as non-invasive CBT monitor.

Effect of monitoring the onset of calving by a calving alarm thermometer on the prevalence of dystocia, stillbirth, retained fetal membranes and clinical metritis in a Hungarian dairy farm

The objective of the present study was to assess the effectiveness of an intravaginal thermometer in the field prediction of the second stage of labor and to determine its impact on the health of dams and newborn calves. Holstein cows (n = 241) were randomly selected about 5 (mean ± SD: 4.7 ± 2.0) days before the expected date of calving and the thermometer was inserted into the vagina. Another 113 cattle served as controls. There was no false alarm during the experiment. The risk of dystocia (Score >1) was 1.9 times higher, the prevalence of stillbirth was 19.8 times higher, the risk of retained fetal membranes (RFM) was 2.8 times higher and the risk of clinical metritis was 10.5 times higher in the control group than in the experimental group.
The prevalence of stillbirth was 7 times higher in cows with dystocia compared to cows with eutocia. The presence of dystocia and stillbirth increased the risk of RFM 4 and 5 times, respectively. The occurrence of RFM increased the risk of development of clinical metritis with a 22 times higher odds. The results indicate that the use of calving alert systems not only facilitates controlling the time of parturition and providing prompt and appropriate calving assistance but also decreases the number of dystocia cases and improves reproductive efficiency, postpartum health of the dam and newborn calf survival.

scanning thermometer

T8710 Consort ea 1282 EUR

scanning thermometer

T8720 Consort ea 1282 EUR

scanning thermometer ch plug

T8710-CH Consort ea 1282 EUR

scanning thermometer uk plug

T8710-UK Consort ea 1282 EUR

scanning thermometer ch plug

T8720-CH Consort ea 1282 EUR

scanning thermometer uk plug

T8720-UK Consort ea 1282 EUR

thermometer probe pt100, 20m cable

T4420 Consort ea 154 EUR

thermometer probe pt100, 15cm, 20m cable

T4421 Consort ea 183 EUR

thermometer probe pt100 ht, 2m cable

T4422 Consort ea 247 EUR

Lethal factor Protease Substrate 1, Internally quenched Coumarin peptide substrate for monitoring LF protease activity (19aa)

LFPS-1 Alpha Diagnostics 500 ug 529 EUR

An overview of different homogenizers, their working mechanisms and impact on processing of fruits and vegetables

Fruits and vegetables (F&V) are the second highest recommended foods, rich in antioxidants, vitamins and minerals, vital for building immunity against chronic diseases. F&V processing involves particle size reduction, for which different types of homogenizers, categorized as mechanical homogenizers, pressure homogenizers and ultrasonic homogenizers are used. The review discusses different types of homogenizers, their working mechanism, and application in F&V processing. Among mechanical homogenizers, knife mills are used for primary size reduction, ball mills for the micronization of dried F&V and rotor-stator homogenizers for emulsification.
Use of the ultrasonic homogenizer is limited to extraction of bioactive compounds or as a pre-treatment for dehydration of F&V. High-pressure homogenizers are most widely used and reported due to the synergistic effect of homogenization and temperature increase, resulting in longer shelf-life and better physicochemical properties of the product. Additionally, the review also explains the effect of homogenization on the physicochemical, sensory and https://biodas.org/ nutraceutical properties of the product.

Pre-processing tissue specimens with a tissue homogenizer: clinical and microbiological evaluation

Background: Tissues are valuable specimens in diagnostic microbiology because they are often obtained by invasive methods, and effort should thus be taken to maximize microbiological yield. The objective of this study was to evaluate the added value of using tissue pre-processing (tissue homogenizer instrument gentleMACS Dissociator) in detecting microorganisms responsible for infections.
Methods: We included 104 randomly collected tissue samples, 41 (39.4 %) bones and 63 (60.6 %) soft tissues, many of those (42/104 (40.4 %)) were of periprosthetic origins. We compared the agreement between pre-processing tissues using tissue homogenizer with routine microbiology diagnostic procedure, and we calculated the performance of these methods when clinical infections were used as reference standard.
Results: There was no significant difference between the two methods (McNemar test, p = 0.3). Among the positive culture using both methods (n = 62), 61 (98.4 %) showed at least one similar microorganism. Exactly similar microorganisms were found in 42/62 (67.7 %) of the samples. From the included tissues, 55/ 104 (52.9 %) were deemed as infected. We found that the sensitivity of homogenized tissue procedure was lower (83.6 %) than when tissue was processed using tissue homogenizer (89.1 %). Sub-analysis on periprosthetic tissues and soft or bone tissues showed comparable results.
Conclusions: The added value of GentleMACS Dissociator tissue homogenizer is limited in comparison to routine tissue processing.

Functionality of MC88- and MPC85-Enriched Skim Milk: Impact of Shear Conditions in Rotor/Stator Systems and High-Pressure Homogenizers on Powder Solubility and Rennet Gelation Behavior

  • Milk protein concentrate (MPC) and micellar casein (MC) powders are commonly used to increase the protein concentration of cheese milk. However, highly-concentrated milk protein powders are challenging in terms of solubility. The research question was whether and how incompletely dissolved agglomerates affect the protein functionality in terms of rennet gelation behavior. For the experiments, skim milk was enriched with either MC88 or MPC85 to a casein concentration of 4.5% (w/w) and sheared on a laboratory and pilot scale in rotor/stator systems (colloid mill and shear pump, respectively) and high-pressure homogenizers.
  • The assessment criteria were on the one hand particle sizes as a function of shear rate, and on the other hand, the rennet gelation properties meaning gelling time, gel strength, structure loss upon deformation, and serum loss. Furthermore, the casein, whey protein, and casein macropeptide (CMP) recovery in the sweet whey was determined to evaluate the shear-, and hence, the particle size-dependent protein accessibility. We showed that insufficient powder rehydration prolongs the rennet gelation time, leading to softer, weaker gels, and to lower amounts of CMP and whey protein in the sweet whey.

Characterization of Astaxanthin Nanoemulsions Produced by Intense Fluid Shear through a Self-Throttling Nanometer Range Annular Orifice Valve-Based High-Pressure Homogenizer

Stable, oil-in-water nanoemulsions containing astaxanthin (AsX) were produced by intense fluid shear forces resulting from pumping a coarse reagent emulsion through a self-throttling annular gap valve at 300 MPa. Compared to crude emulsions prepared by conventional homogenization, a size reduction of over two orders of magnitude was observed for AsX-encapsulated oil droplets following just one pass through the annular valve. In krill oil formulations, the mean hydrodynamic diameter of lipid particles was reduced to 60 nm after only two passes through the valve and reached a minimal size of 24 nm after eight passes.
Repeated processing of samples through the valve progressively decreased lipid particle size, with an inflection in the rate of particle size reduction generally observed after 2-4 passes. Krill- and argan oil-based nanoemulsions were produced using an Ultra Shear Technology™ (UST™) approach and characterized in terms of their small particle size, low polydispersity, and stability.

Characteristics of an Emulsion Obtained Using Hydrophobic Hydroxypropyl Methylcellulose as an Emulsifier and a High-Pressure Homogenizer

Hydrophobically modified hydroxypropyl methylcellulose (HM-HPMC), a polymer in which a small amount of HPMC is stearoxyl substituted, was used as an emulsifier of emulsion-type lotion. A high-pressure homogenizer (microfluidizer) was used. The viscosity of the 1% HM-HPMC aqueous gel decreased after passing through the microfluidizer from 5.5 to 2.7 Pa·s. When liquid paraffin (LP) was used as the oil phase, a stable emulsion was obtained with an LP ratio of 1-40%. The apparent viscosity decreased with LP ratios up to 20%, and then increased with increasing LP concentration.
The emulsions with an LP ratio <20% presented a pseudo-viscous flow, similar to that of the diluted polymer solution. HM-HPMC likely adsorbed onto the oil with a stearoxyl group; thus, the interaction between the stearoxyl group, which explained the high viscosity of HM-HPMC, decreased, reducing the viscosity of the emulsion. The LP ratio was 40%, and the emulsion presented a plastic flow, which is typical of concentrated emulsions. The size of the droplet in the emulsion was approximately 1 µm regardless of the LP ratio. When low-viscosity LPs or monoester-type oils such as isopropyl myristate were used, some of the emulsions presented creaming. An emulsion using HM-HPMC as an emulsifier and an appropriate oil homogenized with a microfluidizer is stable, has low viscosity, and can be easily spread on skin.

Proteomic evaluation of plasma membrane fraction prepared from mouse liver and kidney using a bead homogenizer: Enrichment of drug-related transporter proteins

Quantifying the protein levels of drug transporters in plasma membrane fraction helps elucidate the function of these transporters. In this study, we conducted a proteomic evaluation of enriched drug-related transporter proteins in plasma membrane fraction prepared from mouse liver and kidney tissues using the Membrane Protein Extraction Kit and a bead homogenizer. Crude and plasma membrane fractions were prepared using either the Dounce or bead homogenizer, and protein levels were determined using quantitative proteomics.
In liver tissues, the plasma membrane fractions were more enriched in transporter proteins than the crude membrane fractions; the average enrichment ratios of plasma-to-crude membrane fractions were 3.31 and 6.93 using the Dounce and bead homogenizers, respectively. The concentrations of transporter proteins in plasma membrane fractions determined using the bead homogenizer were higher than those determined using the Dounce homogenizer. Meanwhile, in kidney tissues, the plasma membrane fractions were enriched in transporters localized in the brush-border membrane to the same degree for both the homogenizers; however, the membrane fractions obtained using either homogenizer were not enriched in Na+/K+-ATPase and transporters localized in the basolateral membrane. These results indicate that fractionation, using the bead homogenizer, yielded transporter-enriched plasma membrane fractions from mouse liver and kidney tissues; however, no enrichment of basolateral transporters was observed in plasma membrane fractions prepared from kidney tissues.

Micro Bead Sterlizer

B1201-E Benchmark Scientific 1 PC 542.7 EUR

Micro Bead Sterlizer

B1202-E Benchmark Scientific 1 PC 84.14 EUR

Refill Glass Beads

B1201-BEAD Benchmark Scientific 1 PC 117.78 EUR

Bangs Lab Bead Solution

SOLN1-1000 Bangs Laboratories 1000 ML 155.06 EUR

Bangs Lab Bead Solution

SOLN1-2000 Bangs Laboratories 2000 ML 212.7 EUR

Bangs Lab Bead Solution

SOLN1-500 Bangs Laboratories 500 ML 98.51 EUR

Bead Sample Pack - 50mL Set

BSP-50B2 Next Advance 1pack 404 EUR

Bead Sample Pack - 5E Set

BSP-5E Next Advance 1pack 252 EUR

Bead Sample Pack - 5M Set

BSP-5Y Next Advance 1pack 241 EUR

Bead Sample Pack - Full Set

BSP-ALL2 Next Advance 1pack 384 EUR

Bead Sample Pack - Cell Cultures

BSP-CC2 Next Advance 1pack 195 EUR

Bead Sample Pack - Microcentrifuge Set

BSP-MC2 Next Advance 1pack 232 EUR

Bead Sample Pack - Organ Tissues

BSP-OT3 Next Advance 1pack 235 EUR

CM Rapid Run Agarose Bead

CMRR-25 ABTBeads 25 ml 102 EUR

CM Rapid Run Agarose Bead

CMRR-300 ABTBeads 300 ml 492 EUR

DEAE Rapid Run Agarose Bead

DEAERR-25 ABTBeads 25 ml 102 EUR

DEAE Rapid Run Agarose Bead

DEAERR-300 ABTBeads 300 ml 492 EUR

SP Rapid Run Agarose Bead

SPRR-25 ABTBeads 25 ml 102 EUR

SP Rapid Run Agarose Bead

SPRR-300 ABTBeads 300 ml 492 EUR

Anti-DDK(FLAG) Agarose bead Conjugated

D4501-001 GenDepot 1ml 550 EUR

Scalable and Robust Bacterial Cellulose Carbon Aerogels as Reusable Absorbents for High-Efficiency Oil/Water Separation

Efficient selective separation of oils or organic pollutants from water is important for ecological, environmental conservation and sustainable development. Various absorption methods have emerged; the majority of them still suffer from defects including low removal efficiency, a complicated preparation process, and high cost. Herein, we present a highly porous and mechanical resilient bacterial cellulose (BC) carbon aerogel directly from BC hydrogel via facile directional freeze-drying and high-temperature carbonization. The resultant BC carbon aerogel showed excellent mechanical compressibility (maximal height compression ∼99.5%) and elastic recovery due to the porous structure. Taking advantages of the high thermal stability and superhydrophobicity, the BC carbon aerogel was directly used as a versatile adsorbent for oil/water separation.
The result demonstrated that the BC carbon aerogel showed super oil/water separation selectivity with the oil absorption capacity as high as 132-274 g g-1. More importantly, the BC carbon aerogel adsorbent can be reused by a simple absorption/combustion method and still keep high-efficiency oil absorption capacity and excellent superhydrophobicity after 20 absorption/combustion cycles, displaying recyclability and robust stability. In sum, the BC carbon aerogel introduced here is easy to fabricate, ecofriendly, highly scalable, low cost, mechanically robust, and reusable; https://biodas.org/ all of these features make it highly attractive for oil/water separation application.

A camphene-camphor-polymer composite material for the production of superhydrophobic absorbent microporous foams

In a recently published paper (doi.org/10.3390/molecules26113116) on self-propelled motion of objects on the water surface, we described a novel surface-active plastic material obtained by dissolution of camphor and polypropylene in camphene at 250 [Formula: see text]C. The material has wax-like mechanical properties, can be easily formed to any moldable shape, and allows for longer and more stable self-propelled motion if compared with pure camphor or pure camphene or of a camphene-camphor wax.
Here we use scanning electron microscopy to visualize and characterize the microporous structure of the solid polypropylene foam formed in the plastic for different polypropylene contents. The topology of foams remaining in the material after camphor and camphene molecules have been removed through evaporation or dissolution is similar to polypropylene foams obtained using thermally-induced phase separation. We show that the foams have a superhydrophobic surface but strongly absorb non-polar liquids, and suggest an array of potential scientific and industrial applications.

Development of pH-responsive absorbent pad based on polyvinyl alcohol/agarose/anthocyanins for meat packaging and freshness indication

Absorbent pads with antioxidant and pH-responsive color changing functions have been developed based on polyvinyl alcohol (PVA), agarose (AG), and purple sweet potato anthocyanins (PSPA), aiming for fresh keeping and freshness indication of fresh meat. The effects of PSPA content on the structure, physical properties, and colorimetric response towards pH changing of pads were evaluated. The results showed that PSPA interacted with PVA and AG and influenced the crystallinity, thermal stability and micro-morphology of pads.
The increase of the PSPA content from 3% to 12% improved the strength and DPPH radical scavenging activity of the pads, but reduced the swelling ratio. Significant color change of the pads was observed when pH increased from 3 to 10, and the pad containing 9% PSPA presented the most distinguishable color change with the change of pH. When applied as an absorbent pad for minced meat packaging, the pad indicated the real-time spoilage of the meat through obvious color change, and also extended the shelf life by at least 24 h. Therefore, the dual-functional pad shows great potential to be applied as a smart and active packaging for fresh meat, which would play an important role in ensuring food safety and improving food storage quality.

Occurrence and distribution of organic ultraviolet absorbents in sediments from small urban rivers, Tianjin, China: Implications for risk management

Organic ultraviolet absorbents (OUVAs) in the environment have been of increasing concern because of their potential hazards. However, the OUVAs in waters is far from being well studied and little is known about their occurrence in small urban rivers. This study investigated the concentrations and distribution of eleven OUVAs in the sediments from five small urban rivers of Tianjin, China, and found total concentrations in the range of 11.6-189 ng/g dry weight. Relative to other rivers and lakes, no high concentrations of sediment OUVAs were observed in the small rivers. Benzophenone, homosalate and octocrylene were the dominant OUVAs, representing medians of 13.3%, 12.4% and 12.3% of the total concentrations, respectively.
Our observed composition profiles of these chemicals were different from those found in most of other waters. The sediment OUVAs may originate more from industrial activities than the use of cosmetics and personal care products in this area. The risk to aquatic organisms from exposure to the sediment OUVAs in these small urban rivers was considered low, except for benzophenone. However, more researches are needed to investigate the pollution and associated risks of these chemicals in urban rivers due to the complexity of their toxicity to aquatic organisms.

Mixture Compound Fertilizer and Super Absorbent Polymer Application Significantly Promoted Growth and Increased Nutrient Levels in Pinus massoniana Seedlings and Soil in Seriously Eroded Degradation Region of Southern China

  • Pinus massoniana is the pioneer tree species in the red soil regions of southern China, however, the serious understory soil erosion and nutrient deficiency in that region are the main factors restricting the growth of P. massoniana. This field study examined the effects of compound fertilizer and super absorbent polymer (SAP) on the physiology, growth characteristics, biomass, soil nutrient, plant nutrient content, and nutrient uptake efficiency of 1-year-old P. massoniana seedlings for 2 years at Changting, Fujian in South China. One control (no fertilizer, CK) and fertilization treatments were established, namely, single compound fertilizer application (0.94, 1.89, and 3.56 g⋅plant-1) and mixture compound fertilizer and SAP application (0.94 + 1.01, 1.89 + 1.01, and 3.56 + 1.01 g⋅plant-1).
  • Fertilization significantly improved the physiological performance, root collar diameter growth, height growth, biomass, and nutrient uptake of the seedlings. Compared with other fertilization treatments, the mixture compound fertilizer and SAP application significantly improved the seedling photosynthesis, which meant that the SAP had a significant effect on promoting photosynthesis. Under the mixture compound fertilizer and SAP application, the whole biomass of the seedlings was higher than that of all other treatments. Fertilization significantly increased the nitrogen (N), phosphorus (P), and potassium (K) content in the soils, leaves, stems, and roots of the seedlings, respectively.
  • The P content was the main factor affecting growth characteristics and contributed to 58.03% of the total variation in seedling growth characteristics (P < 0.01). The N:P ratio of CK in the soils, leaves, and stems were higher than that of all the fertilization treatments, indicating that the severely eroded and degraded region had little P and required much of P. The principal component analysis indicated that the F2S (1.89 + 1.01 g) was the optimum fertilization amount and method in this experiment. These results provide a theoretical basis for the fertilization management of P. massoniana forests with severely eroded and degraded red soil regions.

Human anti-Mouse Antibody Absorbent (HAMA)

HAMA Alpha Diagnostics 1 gram 286 EUR

RF Absorbent for the removal of IgG in human plasma/serum

RF-ABS Alpha Diagnostics 100 tests 225 EUR

S. Pneumococcal CWPS/22F Absorbent solution for removing/adsorbing non-specific CWPS/22F from human or animal samples (sufficient for 50 samples)

560-CW-ABS Alpha Diagnostics 1 vial 347 EUR

Superhydrophobic paper in the development of disposable labware and lab-on-paper devices

Traditionally in superhydrophobic surfaces history, the focus has frequently settled on the use of complex processing methodologies using nonbiodegradable and costly materials. In light of recent events on lab-on-paper emergence, there are now some efforts for the production of superhydrophobic paper but still with little development and confined to the fabrication of flat devices. This work gives a new look at the range of possible applications of bioinspired superhydrophobic paper-based substrates, obtained using a straightforward surface modification with poly(hydroxybutyrate). As an end-of-proof of the possibility to create lab-on-chip portable devices, the patterning of superhydrophobic paper with different wettable shapes is shown with low-cost approaches.
Furthermore, we suggest the use of superhydrophobic paper as an extremely low-cost material to design essential nonplanar lab apparatus, including reservoirs for liquid storage and manipulation, funnels, tips for pipettes, or accordion-shaped substrates for liquid transport or mixing. Such devices take the advantage of the self-cleaning and extremely water resistance properties of the surfaces https://biodas.org/ as well as the actions that may be done with paper such as cut, glue, write, fold, warp, or burn. The obtained substrates showed lower propensity to adsorb proteins than the original paper, kept superhydrophobic character upon ethylene oxide sterilization and are disposable, suggesting that the developing devices could be especially adequate for use in contact with biological and hazardous materials.

Contaminating levels of zinc found in commonly-used labware and buffers affect glycine receptor currents

Zinc is an allosteric modulator of glycine receptor function, enhancing the effects of glycine at nM to low μM concentrations, and inhibiting its effects at higher concentrations. Because of zinc’s high potency at the glycine receptor, there exists a possibility that effects attributed solely to exogenously-applied glycine in fact contain an undetected contribution of zinc acting as an allosteric modulator. We found that glycine solutions made up in standard buffers and using deionized distilled water produced effects that could be decreased by the zinc chelator tricine.
This phenomenon was observed in three different vials tested and persisted even if vials were extensively washed, suggesting the zinc was probably present in the buffer constituents. In addition, polystyrene, but not glass, pipets bore a contaminant that enhanced glycine receptor function and that could also be antagonized by tricine. Our findings suggest that without checking for this effect using a chelator such as tricine, one cannot assume that responses elicited by glycine applied alone are not necessarily also partially due to some level of allosteric modulation by zinc.

Labware additives identified to be selective monoamine oxidase-B inhibitors

Plastic labware is used in all processes of modern pharmaceutical research, including compound storage and biological assays. The use of these plastics has created vast increases in productivity and cost savings as experiments moved from glass test tubes and capillary pipettes to plastic microplates and multichannel liquid handlers. One consequence of the use of plastic labware, however, is the potential release of contaminants and their resultant effects on biological assays.
We report herein the identification of biologically active substances released from a commonly used plastic microplate. The active contaminants were identified by gas chromatography-mass spectroscopy as dodecan-1-ol, dodecyl 3-(3-dodecoxy-3-oxopropyl)sulfanylpropanoate, and dodecanoic acid, and they were found to be selective monoamine oxidase-B inhibitors.

Open Labware: 3-D printing your own lab equipment

The introduction of affordable, consumer-oriented 3-D printers is a milestone in the current “maker movement,” which has been heralded as the next industrial revolution. Combined with free and open sharing of detailed design blueprints and accessible development tools, rapid prototypes of complex products can now be assembled in one’s own garage–a game-changer reminiscent of the early days of personal computing. At the same time, 3-D printing has also allowed the scientific and engineering community to build the “little things” that help a lab get up and running much faster and easier than ever before.

3D Printing in the Laboratory: Maximize Time and Funds with Customized and Open-Source Labware

3D-Printed Labware for High-Throughput Immobilization of Enzymes

  1. In continuous flow biocatalysis, chemical transformations can occur under milder, greener, more scalable, and safer conditions than conventional organic synthesis. However, the method typically involves extensive screening to optimize each enzyme’s immobilization on its solid support material. The task of weighing solids for large numbers of experiments poses a bottleneck for screening enzyme immobilization conditions.
  2. For example, screening conditions often require multiple replicates exploring different support chemistries, buffer compositions, and temperatures. Thus, we report 3D-printed labware designed to measure and handle solids in multichannel format and expedite screening of enzyme immobilization conditions.
  3. To demonstrate the generality of these advances, alkaline phosphatase, glucose dehydrogenase, and laccase were screened for immobilization efficiency on seven resins. The results illustrate the requirements for optimization of each enzyme’s loading and resin choice for optimal catalytic performance. Here, 3D-printed labware can decrease the requirements for an experimentalist’s time by >95%.
  4. The approach to rapid optimization of enzyme immobilization is applicable to any enzyme and many solid support resins. Furthermore, the reported devices deliver precise and accurate aliquots of essentially any granular solid material.

Adsorption of bacteriophages on polypropylene labware affects the reproducibility of phage research

Hydrophobicity is one of the most critical factors governing the adsorption of molecules and objects, such as virions, on surfaces. Even moderate change of wetting angle of plastic surfaces causes a drastic decrease ranging from 2 to 5 logs of the viruses (e.g., T4 phage) in the suspension due to adsorption on polymer vials’ walls. The effect varies immensely in seemingly identical containers but purchased from different vendors. Comparison of glass, polyethylene, polypropylene, and polystyrene containers revealed a threshold in the wetting angle of around 95°: virions adsorb on the surface of more hydrophobic containers, while in more hydrophilic vials, phage suspensions are stable.
The polypropylene surface of the Eppendorf-type and Falcon-type can accommodate from around 108 PFU/ml to around 1010 PFU/ml from the suspension. The adsorption onto the container’s wall might result in complete scavenging of virions from the bulk. We developed two methods to overcome this issue. The addition of surfactant Tween20 and/or plasma treatment provides a remedy by modulating surface wettability and inhibiting virions’ adsorption. Plastic containers are essential consumables in the daily use of many bio-laboratories. Thus, this is important not only for phage-related research (e.g., the use of phage therapies as an alternative for antibiotics) but also for data comparison and reproducibility in the field of biochemistry and virology.

Benchmark Agarose LE

A1700 Benchmark Scientific 1 PC 321.65 EUR

Benchmark Agarose LE

A1701 Benchmark Scientific 1 PC 100.09 EUR

Benchmark Agarose LE

A1705 Benchmark Scientific 1 PC 150.33 EUR

Benchmark Agarose HR

A1801-HR Benchmark Scientific 1 PC 137.57 EUR

Benchmark Agarose LM

A1801-LM Benchmark Scientific 1 PC 259.88 EUR

Benchmark Agarose 3:1

A1801-31 Benchmark Scientific 1 PC 285.98 EUR

EZ Pack

A2501 Benchmark Scientific 1 PC 365.66 EUR

EZ Pack

A2505 Benchmark Scientific 1 PC 183.03 EUR

Test Tube rack for 15 x 50 ml tubes

 -B2000-4-T500 Benchmark Scientific 1 PC 210.29 EUR

Test Tube rack for 41 x 15 ml tubes

  B2000-4-T150 Benchmark Scientific 1 PC 137.21 EUR

Test Tube rack for 40 x 1.5/2.0 ml tubes

  B2000-4-T1520 Benchmark Scientific 1 PC 137.21 EUR

Test Tube rack for 76 x 15 ml tubes

  B2000-8-T150 Benchmark Scientific 1 PC 210.29 EUR

Test Tube rack for 30 x 50 ml tubes

  B2000-8-T500 Benchmark Scientific 1 PC 2496.65 EUR

LaBungee

B0718 Benchmark Scientific 1 PC 847.13 EUR

Loop holder attachment

B1000-01 Benchmark Scientific 1 PC 170.56 EUR

Slide dryer attachment for 3 slides

B1000-03 Benchmark Scientific 1 PC 197.97 EUR

BactiZapper

B1000-E Benchmark Scientific 1 PC 462.95 EUR

Heating Element

B1000-RA-E Benchmark Scientific 1 PC 1151.63 EUR

Refill Glass Beads

B1201-BEAD Benchmark Scientific 1 PC 117.78 EUR

Micro Bead Sterlizer

B1201-E Benchmark Scientific 1 PC 542.7 EUR

Micro Bead Sterlizer

B1202-E Benchmark Scientific 1 PC 84.14 EUR

MyBath

B2000-12-E Benchmark Scientific 1 PC 131.99 EUR

MyBath

B2000-2-E Benchmark Scientific 1 PC 784.49 EUR

MyBath

B2000-4-E Benchmark Scientific 1 PC 851.48 EUR

Contaminating levels of zinc found in commonly-used labware and buffers affect glycine receptor currents

Zinc is an allosteric modulator of glycine receptor function, enhancing the effects of glycine at nM to low μM concentrations, and inhibiting its effects at higher concentrations. Because of zinc’s high potency at the glycine receptor, there exists a possibility that effects attributed solely to exogenously-applied glycine in fact contain an undetected contribution of zinc acting as an allosteric modulator. We found that glycine solutions made up in standard buffers and using deionized distilled water produced effects that could be decreased by the zinc chelator tricine.
This phenomenon was observed in three different vials tested and persisted even if vials were extensively washed, suggesting the zinc was probably present in the buffer constituents. In addition, polystyrene, but not glass, pipets bore a contaminant that enhanced glycine receptor function and that could also be antagonized by tricine. Our findings suggest that without checking for this effect using a chelator such as tricine, one cannot assume that responses elicited by glycine applied alone are not necessarily also partially due to some level of allosteric modulation by zinc.

Superhydrophobic paper in the development of disposable labware and lab-on-paper devices

Traditionally in superhydrophobic surfaces history, the focus has frequently settled on the use of complex processing methodologies using nonbiodegradable and costly materials. In light of recent events on lab-on-paper emergence, there are now some efforts for the production of superhydrophobic paper https://biodas.org/ but still with little development and confined to the fabrication of flat devices. This work gives a new look at the range of possible applications of bioinspired superhydrophobic paper-based substrates, obtained using a straightforward surface modification with poly(hydroxybutyrate). As an end-of-proof of the possibility to create lab-on-chip portable devices, the patterning of superhydrophobic paper with different wettable shapes is shown with low-cost approaches.
Furthermore, we suggest the use of superhydrophobic paper as an extremely low-cost material to design essential nonplanar lab apparatus, including reservoirs for liquid storage and manipulation, funnels, tips for pipettes, or accordion-shaped substrates for liquid transport or mixing. Such devices take the advantage of the self-cleaning and extremely water resistance properties of the surfaces as well as the actions that may be done with paper such as cut, glue, write, fold, warp, or burn. The obtained substrates showed lower propensity to adsorb proteins than the original paper, kept superhydrophobic character upon ethylene oxide sterilization and are disposable, suggesting that the developing devices could be especially adequate for use in contact with biological and hazardous materials.

3D Printing in the Laboratory: Maximize Time and Funds with Customized and Open-Source Labware

3D-Printed Labware for High-Throughput Immobilization of Enzymes

In continuous flow biocatalysis, chemical transformations can occur under milder, greener, more scalable, and safer conditions than conventional organic synthesis. However, the method typically involves extensive screening to optimize each enzyme’s immobilization on its solid support material. The task of weighing solids for large numbers of experiments poses a bottleneck for screening enzyme immobilization conditions. For example, screening conditions often require multiple replicates exploring different support chemistries, buffer compositions, and temperatures.
Thus, we report 3D-printed labware designed to measure and handle solids in multichannel format and expedite screening of enzyme immobilization conditions. To demonstrate the generality of these advances, alkaline phosphatase, glucose dehydrogenase, and laccase were screened for immobilization efficiency on seven resins. The results illustrate the requirements for optimization of each enzyme’s loading and resin choice for optimal catalytic performance. Here, 3D-printed labware can decrease the requirements for an experimentalist’s time by >95%. The approach to rapid optimization of enzyme immobilization is applicable to any enzyme and many solid support resins. Furthermore, the reported devices deliver precise and accurate aliquots of essentially any granular solid material.

Additive manufactured customizable labware for biotechnological purposes